MATHEMATICS, BACHELOR OF ARTS

To obtain a B.A. with a major in Mathematics, a student must fulfill university, college, and departmental requirements. Minimum hour requirements follow:

- 46 hours of University General Education courses (Testing out of academic skills requirements and enrolling in General Education courses that meet both distribution and diversity requirements are likely to reduce the total number of General Education hours to 40 or fewer.)
- 16 hours foreign language requirement
- 12 hours college breadth requirement
- 46 hours of major courses
- Elective hours as required to total 120 hours

TOTAL HOURS: 120

Requirements

Code	Title	Credits
Courses Required (Core Curriculum)		
MATH 1950	CALCULUS I	5
MATH 1960	CALCULUS II	4
MATH 1970	CALCULUS III	4
MATH 2050	APPLIED LINEAR ALGEBRA	3
MATH 2230	INTRODUCTION TO ABSTRACT MATH	3
MATH 2350	DIFFERENTIAL EQUATIONS	3
MATH 3230	INTRODUCTION TO ANALYSIS	3
Select one of the following courses:		3
CIST 1400	INTRODUCTION TO COMPUTER SCIENCE I	
MATH 2200	MATHEMATICAL COMPUTING I ${ }^{1}$	
MATH 3250	INTRODUCTION TO NUMERICAL METHODS	

Additional Coursework: Concentration or No

 Concentration OptionAn additional 18 credits of approved upper-level MATH/STAT
courses which must include at least 9 credits at the 4000 level

Optional Concentrations Include:

Applied Mathematics
Pre-Actuarial Mathematics
Computational Mathematics
Data Science
Mathematics Education
Operations Research
Pure Mathematics
Statistics
B.A. Degree Additional Requirements

Foreign language through the intermediate level.
Total Credits

1 Recommended for students in the Education, Statistics, and Pre-Actuarial Mathematics concentrations.
${ }^{2}$ Recommended for students in the Computational Mathematics concentration.

Applied Mathematics Concentration

This concentration is recommended for students interested in inherently interdisciplinary subjects which apply to many problems that arise in the physical, biological, economic, social, and network sciences as well as in engineering. Applied Mathematics provides a set of qualitative and quantitative skills and knowledge for use in these fields.

Applied Mathematics has a profound impact on our daily lives. Whether it is weather forecasts, genetic or neural networks, search engines, climate research, evolution of species, stock market and finance, ground or air transportation, architecture, or movie recommendations, none of these would work the way they do without algorithms and tools from the mathematical sciences. The concentration in Applied Mathematics allows students to investigate the mathematics of problems arising in the physical, biological, economic, social, and network sciences as well as in engineering.

Applied Mathematics appeals to people with a variety of different interests, ranging from those with a desire to obtain a good quantitative background for use in some future career, to those who are interested in the basic techniques and approaches in themselves.
Code Title Credits

The $\mathbf{1 8}$ credits of upper-level courses must include:		
MATH $\mathbf{3 1 0 0}$	APPLIED COMBINATORICS	$\mathbf{3}$
MATH 4330	INTRODUCTION TO PARTIAL	$\mathbf{3}$
	DIFFERENTIAL EQUATIONS	
MATH 4760	TOPICS IN APPLIED MATHEMATICS	$\mathbf{3}$
MATH 4970	SEMINAR IN APPLIED MATHEMATICS	$\mathbf{3}$
Along with two $\mathbf{3}$ credit electives from the following:	$\mathbf{6}$	

MATH 3400	THEORY OF INTEREST
MATH 4050	LINEAR ALGEBRA
MATH 4150	GRAPH THEORY \& APPLICATIONS
MATH/CSCI 4200	NUMERICAL METHODS
MATH 4300	DETERMINISTIC OPERATIONS RESEARCH MODELS
MATH 4310	PROBABILISTIC OPERATIONS RESEARCH MODELS
MATH 4320	COMPUTATIONAL OPERATIONS RESEARCH
MATH 4350	ORDINARY DIFFERENTIAL EQUATIONS
MATH 4400	THE FINITE ELEMENT METHOD
MATH 4560	NUMBER THEORY \& CRYPTOGRAPHY
MATH 4740	INTRODUCTION TO PROBABILITY AND STATISTICS I
MATH 4750	INTRODUCTION TO PROBABILITY AND STATISTICS II
MATH 4760	TOPICS IN APPLIED MATHEMATICS
MATH 4900	INDEPENDENT STUDIES
MATH 4970	SEMINAR IN APPLIED MATHEMATICS

Total Credits

Data Science Concentration

This concentration is recommended for students interested in a career as a data science professional or pursuing graduate study in disciplines with a strong data analysis component. Data science is the art and science of transforming raw data into deliverable data products in order to help businesses or government agencies make more informed decisions.

Code	Title	Credits
Upper Level Courses		
The 18 credits of upper-level courses must include:		
MATH 3200	MATHEMATICAL COMPUTING II	3
or CSCI 1620	INTRODUCTION TO COMPUTER SCIENCE II	

MATH 4740	INTRODUCTION TO PROBABILITY AND STATISTICS I	3
MATH 4750	INTRODUCTION TO PROBABILITY AND STATISTICS II	3
STAT 4410	INTRODUCTION TO DATA SCIENCE	3
STAT 4420	EXPLORATORY DATA VISUALIZATION AND QUANTIFICATION	3
Select two of the following elective courses:		3
MATH/CSCI 4300	DETERMINISTIC OPERATIONS RESEARCH MODELS	
MATH/CSCI 4310	PROBABILISTIC OPERATIONS RESEARCH MODELS	
MATH/STAT 4450	INTRODUCTION TO MACHINE LEARNING AND DATA MINING	
MATH 4900	INDEPENDENT STUDIES	
STAT 4430	LINEAR MODELS	
STAT 4440	TIME SERIES ANALYSIS	

Mathematics Education Concentration

This concentration is recommended for students interested in pursuing a career in Secondary Education. In some cases it is possible to simultaneously earn a B.S. or a B.A. in Math and a B.S. in Secondary Education.

Code	Title	Credits
The 18 credits of upper-level courses must include:		
MATH 3640	MODERN GEOMETRY	3
MATH 3850	HISTORY OF MATHEMATICS	3
MATH 4030	MODERN ALGEBRA	3
MATH 4740	INTRODUCTION TO PROBABILITY AND STATISTICS I	3
Select two of the following elective courses:		6
MATH 3100	APPLIED COMBINATORICS	
MATH 3200	MATHEMATICAL COMPUTING II	
MATH 4050	LINEAR ALGEBRA	
MATH 4560	NUMBER THEORY \& CRYPTOGRAPHY	
MATH 4610	INTRODUCTION TO TOPOLOGY	

Total Credits

Additional Requirement

Students must include the following Educator Preparation Program Requirements:

Code	Title	Credits
TED 2100	EDUCATIONAL FOUNDATIONS	3
TED 2200	HUMAN RELATIONS FOR BIAS-FREE CLASSROOMS	3
TED 2380	DEVELOPMENT AND LEARNING IN ADOLESCENCE	3
TED 2400	PLANNING FOR EFFECTIVE TEACHING	6
TED 3550	SECONDARY CLASSROOM MANAGEMENT	3
TED 3690	LITERACY AND LEARNING	3
TED 4000	SPECIAL METHODS IN THE CONTENT AREA	3
SPED 3800	DIFFERENTIATION AND INCLUSIVE PRACTICES	3

Code	Title	Credits
For those who want a Nebraska Math 6-12 Teaching Certificate:		
TED 4600	CLINICAL PRACTICE AND SEMINAR: ELEMENTARY OR SECONDARY LEVEL ${ }^{1}$	12
1 These requirements also fulfill the College of Arts \& Sciences breadth requirement.		

Pre-Actuarial Mathematics Concentration

This concentration is recommended for students interested in a career as an Actuary and who plan on taking the actuarial exams.

An actuary evaluates the financial impact of risk by evaluating the likelihood of future events, designing creative ways to reduce the likelihood of undesirable events, and decreasing the impact of undesirable events that do occur.

Actuaries work for insurance companies, government, and consulting firms. In the actuarial profession, you can earn while you learn. Many students receive on-the-job training while enrolled in the examination process. Employers are generally supportive and may give students study time during working hours, pay exam fees, and award raises for each exam passed. However, most employers prefer to hire people who have started the series of examinations on their own and have already passed at least two or three.

Code	Title	Credits
The 18 credits of upper-level courses must include:		
MATH 3200	MATHEMATICAL COMPUTING II	3
MATH 3400	THEORY OF INTEREST	3
MATH/CSCI 4310	PROBABILISTIC OPERATIONS RESEARCH MODELS	3
or STAT 4430	LINEAR MODELS	
MATH 4740	INTRODUCTION TO PROBABILITY AND STATISTICS I	3
MATH 4750	INTRODUCTION TO PROBABILITY AND STATISTICS II	3
STAT 4440	TIME SERIES ANALYSIS	3
Total Credits		18

Operations Research Concentration

This concentration is recommended for students interested in a career as an operations research analyst or in pursuing a graduate degree in operations research or a related field.

The broad real-world applicability of operations research makes it an attractive choice for math majors. In operations research courses, students get a solid background in mathematical modeling of decision-making problems, algorithms for solving different types of these problems, as well as experience using appropriate software tools.

Operations research is the application of advanced analytical methods to enable better decision making. A plethora of problems may be solved using operations research; among these are (1) determining the route a delivery truck should take in order to make all deliveries while traveling the fewest number of miles; (2) determining the best location for a new facility such as a fire station; (3) scheduling airline flights and crew; and (4) determining the optimal distribution of bicycles in a bike sharing system. Operations research includes problem-solving methods such as deterministic and stochastic optimization, machine learning, and simulation.

Code
 Title
 Credits

The 18 hours of upper-level courses must include:
MATH 3200
MATHEMATICAL COMPUTING II

or CSCI 1620	INTRODUCTION TO COMPUTER SCIENCE II	
MATH/CSCI 4300	DETERMINISTIC OPERATIONS RESEARCH MODELS	3
MATH/CSCI 4310	PROBABILISTIC OPERATIONS RESEARCH MODELS	3
MATH 4320	COMPUTATIONAL OPERATIONS RESEARCH	3
MATH 4740 or STAT 3800	INTRODUCTION TO PROBABILITY AND STATISTICS I APPLIED ENGINEERING PROBABILITY AND STATISTICS	3
Select one of the following:		3
MATH/CSCI 4150	GRAPH THEORY \& APPLICATIONS	
MATH/STAT 4450	INTRODUCTION TO MACHINE LEARNING AND DATA MINING	
MATH 4750	INTRODUCTION TO PROBABILITY AND STATISTICS II	
MATH 4900	INDEPENDENT STUDIES	
STAT 4410	INTRODUCTION TO DATA SCIENCE	
STAT 4420	EXPLORATORY DATA VISUALIZATION AND QUANTIFICATION	
STAT 4430	LINEAR MODELS	
STAT 4440	TIME SERIES ANALYSIS	
Total Credits		18

Statistics Concentration

This concentration is recommended for students interested in the theoretical and practical aspects of statistics, particularly those students who are interested in pursuing graduate study in statistics or biostatistics.

Statistics, the study of data, is of growing importance. Students who have the skills to properly collect, analyze, interpret, and present data are in high demand around the country.

The objectives of this concentration are: (1) to gain an understanding of the mathematical underpinnings of statistics; (2) to use appropriate statistical modeling to solve practical problems; (3) to develop an understanding of how to use statistical software; (4) to communicate statistical results to nonstatisticians.

Statistics is used in many fields, including biology, sociology, psychology, medicine, economics, quality control, and sports. This diversity, along with the growing need for people with statistical knowledge, makes it an attractive choice for mathematics students.

Code

Title
Credits
The 18 credits of upper-level courses must include:

MATH 3200	MATHEMATICAL COMPUTING II	3
MATH 4740	INTRODUCTION TO PROBABILITY AND STATISTICS I	3
MATH 4750	INTRODUCTION TO PROBABILITY AND STATISTICS II	3
Select three of the following, with at least two from group A:		9
Group A:		
STAT 4420	EXPLORATORY DATA VISUALIZATION AND QUANTIFICATION	
STAT 4430	LINEAR MODELS	
STAT 4440	TIME SERIES ANALYSIS	
Group B:		
MATH/CSCI 3100	APPLIED COMBINATORICS	
MATH/CSCI 4310	PROBABILISTIC OPERATIONS RESEARCH MODELS	

MATH/STAT 4450	INTRODUCTION TO MACHINE LEARNING AND DATA MINING
MATH 4900	INDEPENDENT STUDIES
STAT 4410	INTRODUCTION TO DATA SCIENCE

Total Credits

Computational Mathematics Concentration

This concentration is recommended for students interested in computational science, particularly those students who are interested in pursuing graduate study in applied and computational mathematics at the graduate level.

A concentration in computational mathematics may be useful in a wide range of areas including science, engineering, government, healthcare, business, and information technology. The specialization in computational mathematics is designed for students with a strong interest in Mathematics and in mathematical applications to areas of science and engineering. By choosing elective courses carefully, students completing this specialization will be prepared for a career in a variety of computing and/or engineering areas. Students will also be prepared to continue on to a graduate program in applied mathematics.

Computational mathematics involves the use of math and computers to solve problems and predict outcomes. The concentration in computational mathematics is intended for any student who is interested in applications to solving practical and physical problems in engineering, science, and business. This concentration is also recommended for students who wish to work in the research and development area of industry. The concentration is especially intended for students seeking a career as quantitative analysts, computational scientists, and applied mathematicians, and for those thinking of continuing the study of applied and computational mathematics at the graduate level.

Code	Title	Credits
The 18 credits of upper-level courses must include:		
MATH/CSCI 4200	NUMERICAL METHODS	3
MATH 4330	INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS	3
MATH 4350	ORDINARY DIFFERENTIAL EQUATIONS	3
MATH 4400	THE FINITE ELEMENT METHOD	3
Select two of the following:		6
MATH 4050	LINEAR ALGEBRA	
MATH 4230	MATHEMATICAL ANALYSIS I	
MATH 4240	MATHEMATICAL ANALYSIS II	
MATH 4320	COMPUTATIONAL OPERATIONS RESEARCH	
MATH 4740	INTRODUCTION TO PROBABILITY AND STATISTICS I	
MATH 4750	INTRODUCTION TO PROBABILITY AND STATISTICS II	
MATH 4900	INDEPENDENT STUDIES	
MATH 4970	SEMINAR IN APPLIED MATHEMATICS	

Total Credits
18

Pure Mathematics Concentration

What do UNO Alumni Chief Operating Officer Matt Culek of Citadel Securities, Senior Industrial Logician Andrew Gacek of Rockwell Collins, Microsoft Data Scientist Daniel Miller and University of Toronto Postdoc Melissa Emory have in common? They sought out the strongest foundation in mathematics available here at UNO, taking the courses required for the Pure Mathematics Concentration.

This concentration is strongly recommended for students interested in a pursuing a graduate degree in mathematics, but as indicated above, is
highly recommended for any student interested in getting the most out of their mathematics major.

Students pursuing a graduate degree are expected to have a strong foundation based in analysis, topology, and abstract algebra. This is what this concentration provides

Challenging yourself has other advantages. Matt Culek credits his ability to trouble-shoot proposals brought to him by quantitative analysts at Citadel
Securities to the habits of thought developed in his undergraduate course in number theory here at UNO.

Code	Title	Credits
18 credits of upper-level courses in this concentration must include the following $\mathbf{3}$ courses:		9
MATH 4050	LINEAR ALGEBRA (3 credits)	
MATH 4110	ABSTRACT ALGEBRA I (3 credits)	
MATH 4230	MATHEMATICAL ANALYSIS I (3 credits)	
Choose 3 of the fo	owing courses:	9
NOTE: Students who plan to apply for a Ph.D. program in Mathematics should choose their elective courses from those with the numbered superscripts, with \#1 signifying highest priority.		
MATH 3640	MODERN GEOMETRY	
MATH 4010	INTRODUCTION TO THE THEORY OF RECURSIVE FUNCTIONS	
MATH 4120	ABSTRACT ALGEBRA II (3 credits) ${ }^{2}$	
MATH 4150	GRAPH THEORY \& APPLICATIONS	
MATH 4240	MATHEMATICAL ANALYSIS II (3 credits) ${ }^{3}$	
MATH 4270	COMPLEX ANALYSIS (3 credits) ${ }^{4}$	
MATH 4330	INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS ${ }^{5}$	
MATH 4350	ORDINARY DIFFERENTIAL EQUATIONS	
MATH/CSCI 4560	NUMBER THEORY \& CRYPTOGRAPHY (3 credits)	
MATH 4610	INTRODUCTION TO TOPOLOGY (3 credits) ${ }^{1}$	
MATH 4900	INDEPENDENT STUDIES	

Total Credits 18

Applied Mathematics Concentration
 Freshman

	Credits	$\mathbf{1 6}$
Spring		
ENGL 1160	ENGLISH COMPOSITION II	3
MATH 1960	CALCULUS II	4
Foreign Language Course 1120	5	

Humanities/Fine Arts Course		3
	Credits	15
Sophomore		
Fall		
MATH 1970	CALCULUS III	4
MATH 2050	APPLIED LINEAR ALGEBRA (*)	3
Natural/Physical Science with Lab		4
Foreign Language Course 2110		3
*MATH 2050 Requires MATH 1960		
	Credits	14
Spring		
MATH 2230	INTRODUCTION TO ABSTRACT MATH	3
MATH 2350	DIFFERENTIAL EQUATIONS (*)	3
Social Science with U.S. Diversity		3
Humanity/Fine Arts Course		3
Foreign Language Course 2120		3
*MATH 2350 It is recommended you take MATH 2050 first, but not required		
	Credits	15
Junior		
Fall		
HIST 1010	WORLD HISTORY SINCE 1500 (or Minor/2nd Major Course *)	3
MATH 3230	INTRODUCTION TO ANALYSIS (**)	3
Social Science		3
MATH 4330	INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS	3
Coding Course^		3
*A\&S College Requirement Options		
**MATH 3230 Requires MATH 2230		
***MATH 4330: Requires MATH 1970 and MATH 2230.		
${ }^{\wedge}$ See Academic Catalog for list of Coding Course Options.		
	Credits	15
Spring		
HIST 1000	WORLD HISTORY TO 1500 (or Course for Minor/2nd Major ${ }^{\star}$)	3
MATH 3100	APPLIED COMBINATORICS (**)	3
Applied Math	$2^{\star * *}$	3
Advanced Wr	quirement ${ }^{\wedge}$	3
Social Scienc		3
*A\&S College Requirement Options		
**MATH 3100 Requires MATH 2230		
***See Academic Catalog for list of Applied Math Electives.		
${ }^{\wedge}$ Advanced Writing Requirement can be CIST 3000 Advanced Composition for IS\&T, ENGL 3050 Writing for the Workplace, ENGL 3980 Technical Writing Across the Discipline, or PHIL 3000 Philosophy Writng Seminar		
\#SS Must be in a 2nd discipline		
	Credits	15
Senior		
Fall		
Applied Math Elective*		3
Elective		3
Natural/Physical Science ${ }^{\star \star}$		3
Additional Social Science for A\&S or Course towards Minor/2nd Major***		3
Additional Hu Minor/2nd M	and Fine Arts for A\&S or Course towards	3

This roadmap is a suggested plan of study and does not replace meeting with an advisor. Please note that students may need to adjust the actual sequence of courses based on course availability. Please consult an advisor in your major program for further guidance.

This plan is not a contract and curriculum is subject to change

Additional Information About this Plan:

University Degree Requirements: The minimum number of hours for a UNO undergraduate degree is 120 credit hours. Please review the requirements for your specific program to determine all requirements for the program. In order to graduate on-time (four years for an undergraduate degree), you need to take 30 hours each year.

Placement Exams: For Math, English, Foreign Language, a placement exam may be required. More information on these exams can be found at https://www.unomaha.edu/enrollment-management/testing-center/ placement-exams/information.php
**Transfer credit or placement exam scores may change suggested plan of study

Data Science Concentration

Freshman

Fall
CMST 1110
or CMST 2120
ENGL 1150
MATH 1950
PUBLIC SPEAKING FUNDS
or ARGUMENTATION AND DEBATE
ENGLISH COMPOSITION I (*) 3
CALCULUS I (*) 5
Foreign Language Course 1110*** 5
*ENGL 1150: Requires EPPE.
**MATH 1950: Requires Math Placement Exam or ACT or SAT
scores.
***Level 1110 foreign language courses count as a Humanity/Fine Arts course, Global Diversity, and toward the student's BA requirement. If student is fulfilling the BA requirement via alternative methods, then 16 additional credits including a HFA and Global Diversity will need to be factored in to this degree plan.

Spring		
ENGL 1160	ENGLISH COMPOSITION II	3
MATH 1960	CALCULUS II	4
Foreign Language Course 1120		5
Humanities/Fine Arts Course		3
	Credits	15
Sophomore		
Fall		
MATH 1970	CALCULUS III	4
MATH 2050	APPLIED LINEAR ALGEBRA (*)	3
Natural/Physical Science with Lab		4
Foreign Language Course 2110		3
*MATH 2050: Requires MATH 1960.		
	Credits	14
Spring		
MATH 2230	INTRODUCTION TO ABSTRACT MATH	3
MATH 2350	DIFFERENTIAL EQUATIONS	3
Social Science with U.S. Diversity		3
Humanity/Fine Arts Course		3
Foreign Language Course 2120		3
*MATH 2350: It is recommended you take MATH 2050 first, but not required.		
	Credits	15
Junior		
Fall		
HIST 1010 or Minor/2nd Major Course*		3
MATH 3230	INTRODUCTION TO ANALYSIS (**)	3
MATH 4740	INTRODUCTION TO PROBABILITY AND STATISTICS I (***)	3
Coding Course^		3
Social Science		3
*A\&S College Requirement Options		
**MATH 3230: Requires MATH 2230		
***MATH 4740: Requires MATH 1970 and MATH 2230		
${ }^{\wedge}$ See Academic Catalog for list of Coding Course Options.		
	Credits	15
Spring		
HIST 1000 or Course for Minor/2nd Major*		3
MATH 4750	INTRODUCTION TO PROBABILITY AND STATISTICS II (**)	3
MATH 3200 or CSCI 1620	MATHEMATICAL COMPUTING II (***) or INTRODUCTION TO COMPUTER SCIENCE II	3
Advanced Writing	uirement^	3
Social Science\#		3
*A\&S College Requirement Options		
**MATH 4750: Requires MATH 4740		
***MATH 3200: Requires MATH 2200. CSCI 1620: Requires CIST 1400.		
${ }^{\wedge}$ Advanced Writing Requirement can be: CIST 3000 Advanced Composition for IS\&T, ENGL 3050 Writing for the Workplace, ENGL 3980 Technical Writing Across the Discipline, or PHIL 3000 Philosophy Writing Seminar		
\#SS Must be in a 2nd discipline		
	Credits	15
Senior		
Fall		
STAT 4410	INTRODUCTION TO DATA SCIENCE (*)	3

Junior

Fali
*A\&S College Requirement Options
**MATH 3230: Requires MATH 2230
***MATH 4740: Requires MATH 1970 and MATH 2230
${ }^{\wedge}$ See Academic Catalog for list of Coding Course Options.

Spring

Data Science Elective/Elective**	3
Natural/Physical Science***	3
Additional Social Science for A\&S or Course towards Minor/2nd Major^	3
Additional Humanities and Fine Arts for A\&S or Course towards Minor/2nd Major\#	3
*STAT 4410: Requires MATH 4740	
**Students only need one Data Science Elective. Some are offered only in Fall, others only in Spring. Fall: MATH/ CSCI 4300 Deterministic Operations Research Models (prereq: MATH 2050), or STAT 4430 Linear Models (prereq: MATH 4750)	
***N\&PS Course must be in a 2nd discipline	
${ }^{\wedge}$ A\&S College Requirement Options. SS Must be in a 3rd discipline	
\#A\&S College Requirement Options. Additional HFA for A\&S must be in 3rd discipline.	
Credits	15
Spring	
$\begin{array}{ll}\text { STAT } 4420 & \text { EXPLORATORY DATA VISUALIZATION } \\ & \text { AND QUANTIFICATION (}{ }^{\star} \text {) }\end{array}$	3
Data Science Elective/Elective ${ }^{\star \star}$	3
Elective or Minor/Double Major Course***	3
Elective at 3000-4000 Level or Minor/2nd Major Course***	3
Elective at 3000-4000 Level or Minor/2nd Major Course***	3
*STAT 4420: Requires MATH 4750, and CSCI 1620 or MATH 3200	
**Students only need one Data Science Elective. Some are offered only in Fall, others only in Spring. Spring: MATH/ CSCI 4310 Probabilistic Operations Research Models (prereq: MATH 2050 and MATH 4740), STAT 4440 Time Series Analysis (prereq: MATH 4750 and CSCI 1620 or MATH 3200), or MATH/STAT 4450 Intro to Machine Learning \& Data Mining (prereq: MATH 4740)	
***Students need at least 120 credits and a minimum of 27 upper level credits throughout the entire degree, with at least 18 credits of upper level coursework taken within the major/concentration. May need to select 3000/4000 level free electives to reach the 27 credit minimum.	
Credits	15
Total Credits	120

This roadmap is a suggested plan of study and does not replace meeting with an advisor. Please note that students may need to adjust the actual sequence of courses based on course availability. Please consult an advisor in your major program for further guidance.

This plan is not a contract and curriculum is subject to change

Additional Information About this Plan:

University Degree Requirements: The minimum number of hours for a UNO undergraduate degree is 120 credit hours. Please review the requirements for your specific program to determine all requirements for the program. In order to graduate on-time (four years for an undergraduate degree), you need to take 30 hours each year.

Placement Exams: For Math, English, Foreign Language, a placement exam may be required. More information on these exams can be found at https://www.unomaha.edu/enrollment-management/testing-center/ placement-exams/information.php
**Transfer credit or placement exam scores may change suggested plan of study

Mathematics Education Concentration		
Freshman		
Fall		Credits
$\begin{aligned} & \text { CMST } 1110 \\ & \text { or CMST } 2120 \end{aligned}$	PUBLIC SPEAKING FUNDS or ARGUMENTATION AND DEBATE	3
ENGL 1150	ENGLISH COMPOSITION I (*)	3
MATH 1950	CALCULUS I (**)	5
Foreign Language Course 1110***		5
*ENGL 1150: Requires placement via EPPE, AP, or ACT.		
**MATH 1950: Requires placement exam or ACT or SAT scores.		
***Level 1110 foreign language courses count as a Humanity/Fine Arts course, Global Diversity, and toward the student's BA requirement. If student is fulfilling the BA requirement via alternative methods, then 16 additional credits including a HFA and Global Diversity will need to be factored in to this degree plan.		
	Credits	16
Spring		
ENGL 1160	ENGLISH COMPOSITION II	3
MATH 1960	CALCULUS II	4
MATH 2050	APPLIED LINEAR ALGEBRA (*)	3
Foreign Language	rse 1120	5
Recommended: Begin studying for Praxis CORE Academic Skills.		
*MATH 2050: Requires MATH 1950.		
	Credits	15
Summer		
MATH 1970	CALCULUS III	4
	Credits	4
Sophomore		
Fall		
MATH 2200	MATHEMATICAL COMPUTING I (*)	3
MATH 2230	INTRODUCTION TO ABSTRACT MATH (**)	3
TED 2100	EDUCATIONAL FOUNDATIONS (***)	3
TED 2200	HUMAN RELATIONS FOR BIAS-FREE CLASSROOMS (${ }^{\wedge}$)	3
Foreign Language	rse 2110	3
*MATH 2200: Requires MATH 1950.		
**MATH 2230: Requires MATH 1960.		
***TED 2100: Requires 2.50 GPA. Fulfills Advanced Writing Requirement.		
${ }^{\wedge}$ TED 2200: Requires 2.50 GPA.		

	Credits	15
Spring		
MATH 3200	MATHEMATICAL COMPUTING II (*)	3
MATH 3230	INTRODUCTION TO ANALYSIS (**)	3
MATH 4030	MODERN ALGEBRA (***)	3
Humanities and Fine Arts		
Foreign Language Course 2120		
*MATH 3200: Requires MATH 2200		
**MATH 3230: Reqiures MATH 2230		
***MATH 4030: Requires MATH 2030 or MATH 2230		
Required: Pass Praxis CORE Academic Skills by the end of this semester.		

Required: Acceptance into Educator Preparation Program. Must have 2.75 GPA.

Summer		
MATH 2350	DIFFERENTIAL EQUATIONS (*)	3
Humanities \& Fine	s Course + U.S. Diversity	3
*MATH 2350: Requires MATH 1960. MATH 2050 recommended but not required.		
	Credits	6
Junior		
Fall		
MATH 3640	MODERN GEOMETRY (*)	3
TED 2380	DEVELOPMENT AND LEARNING IN ADOLESCENCE (**)	3
TED 2400	PLANNING FOR EFFECTIVE TEACHING (**)	6
Social Science		3
*MATH 3640: Requires MATH 2230		
**TED 2400 and 2380 must be taken back-to-back, in either a Morning or Afternoon block.		
	Credits	15
Spring		
MATH 3100 or MATH 4560	APPLIED COMBINATORICS (*) or NUMBER THEORY \& CRYPTOGRAPHY	3
MATH 3850	HISTORY OF MATHEMATICS (**)	3
TED 3550	SECONDARY CLASSROOM MANAGEMENT (***)	3
TED 3690	LITERACY AND LEARNING (***)	3
Social Science		3
*MATH 3100 or MATH 4560: Requires MATH 2230. MATH 4050 Linear Algebra can also satisfy this requirement. MATH 4050 requires MATH 2050 and MATH 2230.		
**MATH 3850: Requires MATH 2230.		
***TED 3550 and TED 3690 must be taken back-to-back, in either a Morning or Afternoon block.		
	Credits	15
Summer		
Natural/Physical Science Course, with lab*		4
Natural/Physical Science Course		3
*Natural/Physical Science Courses must be in 2 different disciplines		
	Credits	7
Senior		
Fall		
MATH 4740	INTRODUCTION TO PROBABILITY AND STATISTICS I (*)	3
SPED 3800	DIFFERENTIATION AND INCLUSIVE PRACTICES (**)	3
TED 4000	SPECIAL METHODS IN THE CONTENT AREA	3
Social Science ${ }^{\star \star \star}$		3
*MATH 4740: Requires MATH 1970 and MATH 2230		
**SPED 3800: Must be taken concurrently with TED 4000 or TED 3550		
***Social Sciences course must be in a 2nd discipline		
Recommended but not required: Pass Praxis II.		
	Credits	12

Spring		
TED 4600	CLINICAL PRACTICE AND SEMINAR:	$\mathbf{1 2}$
	ELEMENTARY OR SECONDARY LEVEL	
	Credits	$\mathbf{1 2}$
	Total Credits	$\mathbf{1 3 2}$

This roadmap is a suggested plan of study and does not replace meeting with an advisor. Please note that students may need to adjust the actual sequence of courses based on course availability. Please consult an advisor in your major program for further guidance.

This plan is not a contract and curriculum is subject to change

Additional Information About this Plan:

University Degree Requirements: The minimum number of hours for a UNO undergraduate degree is 120 credit hours. Please review the requirements for your specific program to determine all requirements for the program. In order to graduate on-time (four years for an undergraduate degree), you need to take 30 hours each year.

Placement Exams: For Math, English, Foreign Language, a placement exam may be required. More information on these exams can be found at https://www.unomaha.edu/enrollment-management/testing-center/ placement-exams/information.php
**Transfer credit or placement exam scores may change suggested plan of study

GPA Requirements: TED 2100 and TED 2200 require a 2.50 GPA. TED 2380 and TED 2400 as well as Admission into the Teacher Prep Program require a 2.75 GPA.

Graduation Requirements: 2.75 GPA.

Pre-Actuarial Mathematics Concentration

Freshman

Fall Credits
CMST 1110 PUBLIC SPEAKING FUNDS 3
or CMST 2120
or ARGUMENTATION AND DEBATE
MATH 1950 CALCULUS I (*) 5
ENGL 1150 ENGLISH COMPOSITION I (**) 3
Foreign Language Course 1110 ${ }^{\star \star \star} 5$
*MATH 1950: Requires placement exam
**ENGL 1150: Requires placement exam
***Level 1110 foreign language courses count as a Humanity/Fine Arts course, Global Diversity, and toward the student's BA requirement. If student is fulfilling the BA requirement via alternative methods, then 16 additional credits including a HFA and Global Diversity will need to be factored in to this degree plan.

| Credits | 16 |
| :--- | :--- | :--- |

Spring		
MATH 1960	CALCULUS II	4
ENGL 1160	ENGLISH COMPOSITION II	3
Foreign Language Course 1120	5	
Social Science		3
	Credits	$\mathbf{1 5}$

Sophomore Fall		
MATH 1970	CALCULUS III	4
MATH 2230	INTRODUCTION TO ABSTRACT MATH	3
Humanities \& Fine Arts Course/U.S. Diversity	3	
Foreign Language Course 2110	3	

Optional VEE Elective		3
	Credits	16
Spring		
MATH 2050	APPLIED LINEAR ALGEBRA	3
MATH 3230	INTRODUCTION TO ANALYSIS (${ }^{\star}$)	3
Social Science		3
Foreign Language Course 2120		3
Optional VEE Elective		3
*MATH 2230 feeds right into MATH 3230, do your best to keep them in back-to-back semesters.		
NOTE: Student should consider taking the Exam FM through the Society of Actuaries the summer following this semester.		
	Credits	15
Junior		
Fall		
MATH 2200	MATHEMATICAL COMPUTING I	3
MATH 2350	DIFFERENTIAL EQUATIONS	3
MATH 3400	THEORY OF INTEREST (*)	3
MATH 4740	INTRODUCTION TO PROBABILITY AND STATISTICS I (${ }^{\star \star}$)	3
Social Science ${ }^{\star \star \star}$		3
*MATH 3400: Requires MATH 1970		
**MATH 4740: Requires MATH 2230		
${ }^{* * *}$ Social Sciences Course must be in a 2 nd discipline.		
	Credits	15
Spring		
MATH 3200	MATHEMATICAL COMPUTING II	3
MATH 4310 or CSCI 4310	PROBABILISTIC OPERATIONS RESEARCH MODELS (*) or PROBABILISTIC OPERATIONS RESEARCH MODELS	3
MATH 4750	INTRODUCTION TO PROBABILITY AND STATISTICS II (**)	3
Coding Course $2^{\star \star \star}$		3
Natural \& Physical Science		3
Optional VEE Elective		3
*MATH 4310: Requires MATH 4740 and MATH 2050. Student only needs to take MATH/CSCI 4310 OR STAT 4430, not		
**MATH 4750: Requires MATH 4740		
NOTE: Student should consider taking Exam P through the Society of Actuaries the summer following this semester.		
Credits		18
Senior		
Fall		
HIST 1010 or Course toward Minor/2nd Major*		3
STAT 4430	LINEAR MODELS (**)	3
Additional HFA Course for A\&S or Course toward Minor/2nd Major***		3
Natural \& Physical Science, with lab^		4
Humanities/Fine Arts Course\#		3
*A\&S College Requirement Options		
**STAT 4430: Requires MATH 4750. STAT 4430: Student only needs to take MATH/CSCI 4310 OR STAT 4430, not both.		
***A\&S College Requirement Options. Additional HFA must be in a 3rd discipline.		
${ }^{\wedge}$ N\&PS Course must be in a 2nd discipline.		
\#HFA must be in a 2 nd discipline		

Spring	
HIST 1000 or Course for Minor/2nd Major*	3
STAT 4440 TIME SERIES ANALYSIS (${ }^{\text {** })}$	3
Additional Social Science Course for A\&S or Course for Minor/2nd Major***	3
Advanced Writing Requirement^	3
*A\&S College Requirement Options.	
**STAT 4440: Requires MATH 4750	
***A\&S College Requirement Options. Additional Social Sciences Course must be in a 3rd discipline	
${ }^{\wedge}$ Advanced Writing Requirement can be: CIST 3000 Advanced Composition for IS\&T, ENGL 3050 Writing for the Workplace, ENGL 3980 Technical Writing Across the Discipline, or PHIL 3000 Philosophy Writing Seminar.	
NOTE: Students need at least 120 credits and a minimum of 27 upper level credits throughout the entire degree, with at least 18 credits of upper level coursework taken within the major/concentration. May need to select 3000/4000 level free electives to reach the 27 credit minimum.	
Credits	12
Total Credits	123

This roadmap is a suggested plan of study and does not replace meeting with an advisor. Please note that students may need to adjust the actual sequence of courses based on course availability. Please consult an advisor in your major program for further guidance.

This plan is not a contract and curriculum is subject to change
Additional Information About this Plan:
University Degree Requirements: The minimum number of hours for a UNO undergraduate degree is 120 credit hours. Please review the requirements for your specific program to determine all requirements for the program. In order to graduate on-time (four years for an undergraduate degree), you need to take 30 hours each year.

Placement Exams: For Math, English, Foreign Language, a placement exam may be required. More information on these exams can be found at https://www.unomaha.edu/enrollment-management/testing-center/ placement-exams/information.php
**Transfer credit or placement exam scores may change suggested plan of study

Operation Research Concentration

Freshman
Fall Credits
CMST $1110 \quad$ PUBLIC SPEAKING FUNDS 3
ENGL 1150 ENGLISH COMPOSITION I (*) 3
MATH 1950 CALCULUS I (**) 5
Foreign Language Course 1110*** 5
*ENGL 1150: Requires placement exam.
**MATH 1950: Requires Math Placement Exam or ACT or SAT
scores.
***Level 1110 foreign language courses count as a Humanity/Fine Arts course, Global Diversity, and toward the student's BA requirement. If student is fulfilling the BA requirement via alternative methods, then 16 additional credits including a HFA and Global Diversity will need to be factored in to this degree plan.

Credits

Spring

ENGL 1160

MATH 1960	CALCULUS II	4
Foreign Language Course 1120		5
Social Science		3
	Credits	15
Sophomore		
Fall		
MATH 1970	CALCULUS III	4
MATH 2230	INTRODUCTION TO ABSTRACT MATH (*)	3
Natural/Physical Science with Lab		4
Foreign Language Course 2110		3
*MATH 2230: Requires MATH 1960		
	Credits	14
Spring		
MATH 2050	APPLIED LINEAR ALGEBRA (*)	3
MATH 3230	INTRODUCTION TO ANALYSIS (**)	3
Social Science		3
Foreign Language Course 2110		3
Humanities/Fine Arts Course with US Diversity		3
*MATH 2050: Requires MATH 1960		
**MATH 3230: Requires MATH 2230		
Credits		15
Junior		
Fall		
MATH 4300 or CSCI 4300	DETERMINISTIC OPERATIONS RESEARCH MODELS (*) or DETERMINISTIC OPERATIONS RESEARCH MODELS	3
MATH 4740	INTRODUCTION TO PROBABILITY AND STATISTICS I (${ }^{(\star)}$	3
Humanities and Fine Arts		3
Coding Course ${ }^{\star \star \star}$		3
Social Science^		3
*MATH/CSCI 4300: Requires MATH 2050		
**MATH 4740: Requires MATH 2230		
***See Academic Catalog for list of Coding Course Options.		
${ }^{\wedge}$ Social Science must be from 2nd discipline		
Credits		15
Spring		
HIST 1000 or Minor/2nd Major Course*		3
MATH 3200 or CSCI 1620	MATHEMATICAL COMPUTING II (**) or INTRODUCTION TO COMPUTER SCIENCE II	3
MATH 4310 or CSCI 4310	PROBABILISTIC OPERATIONS RESEARCH MODELS (***) or PROBABILISTIC OPERATIONS RESEARCH MODELS	3
Natural/Physical Science^		3
Social Science\#		3
*A\&S College Requirement Options		
**MATH 3200: Requires MATH 2200. CSCI 1620: Requires CIST 1400.		
***MATH/CSCI 4310: Requires MATH 2050 and MATH 4740		
${ }^{\wedge}$ NPS Must be in a 2 nd discipline		
\#SS Must be in a 2nd discipline		
	Credits	15
Senior		
Fall		
MATH 2350	DIFFERENTIAL EQUATIONS (*)	3

Operations Research Elective or Elective at 3000-4000 Level** 3
Major Course ${ }^{\star \star *}$
Additional Social Science Course for A\&S or Minor/2nd Major 3
Elective 3
MATH 2350: Requires MATH 19
**Must take one Operations Research Elective. Fall options: MATH 4750 Probability \& Statistics II, MATH 4900 Independent Studies, STAT 4410 Intro to Data Science, STAT 4430 Linear Models
***A\&S College Requirement Options. Additional HFA must be in a 3rd discipline.
${ }^{\wedge}$ A\&S College Requirement Options. Additional SS must be in a 3rd disciplineCredits15
Spring
HIST 1010 or Minor/2nd Major Course ${ }^{\star}$ 3
MATH 4320 COMPUTATIONAL OPERATIONS 3
RESEARCH (**)
Advanced Writing Requirement ${ }^{\star \star \star}$ 3
Operations Research Elective or Elective at 3000-4000 Level^^ 3
Elective at 3000-4000 Level\# 3
*A\&S College Requirement Options
**MATH 4320: Requires MATH 3200 (or instructorpermission) and MATH 4300.
***Advanced Writing Requirement can be: CIST 3000Advanced Composition for IS\&T, ENGL 3050 Writing forthe Workplace, ENGL 3980 Technical Writing Across theDiscipline, or PHIL 3000 Philosophy Writing Seminar.
${ }^{\wedge}$ Must take one Operations Research Elective. Fall options: MATH 4750 Probability \& Statistics II, MATH 4900 Independent Studies, STAT 4420 Data Visualization, STAT 4440 Time Series Analysis, STAT 4450 Machine Learning \& Data Mining.
\#Students need at least 120 credits and a minimum of 27 upper level credits throughout the entire degree, with at least 18 credits of upper level coursework taken within the major/concentration. May need to select 3000/4000 level free electives to reach the 27 credit minimum.
Credits 15

This roadmap is a suggested plan of study and does not replace meeting with an advisor. Please note that students may need to adjust the actual sequence of courses based on course availability. Please consult an advisor in your major program for further guidance.

This plan is not a contract and curriculum is subject to change

Additional Information About this Plan:

University Degree Requirements: The minimum number of hours for a UNO undergraduate degree is 120 credit hours. Please review the requirements for your specific program to determine all requirements for the program. In order to graduate on-time (four years for an undergraduate degree), you need to take 30 hours each year.

Placement Exams: For Math, English, Foreign Language, a placement exam may be required. More information on these exams can be found at https://www.unomaha.edu/enrollment-management/testing-center/ placement-exams/information.php
**Transfer credit or placement exam scores may change suggested plan of study

Statistics Concentration

Freshman		
Fall		Credits
CMST 1110 or CMST 2120	PUBLIC SPEAKING FUNDS or ARGUMENTATION AND DEBATE	3
ENGL 1150	ENGLISH COMPOSITION I (*)	3
MATH 1950	CALCULUS ${ }^{(\star \star}$)	5
Foreign Language Course 1110 ${ }^{\star \star \star}$		5
*ENGL 1150: Requires placement.		
**MATH 1950: Requires Math Placement Exam or ACT or SAT scores.		
***Level 1110 foreign language courses count as a Humanity/Fine Arts course, Global Diversity, and toward the student's BA requirement. If student is fulfilling the BA requirement via alternative methods, then 16 additional credits including a HFA and Global Diversity will need to be factored in to this degree plan.		
	Credits	16
Spring		
ENGL 1160	ENGLISH COMPOSITION II	3
MATH 1960	CALCULUS II	4
Social Science		3
Foreign Language Course 1120		5
	Credits	15

Sophomore

Fall
MATH 1970 CALCULUS III 4

MATH 2050 APPLIED LINEAR ALGEBRA (*) 3
Natural/Physical Science with Lab 4
Foreign Language Course 21103

*MATH 2050: Requires MATH 1960	$\mathbf{1 4}$

Spring
$\begin{array}{lll}\text { MATH } 2230 & \text { INTRODUCTION TO ABSTRACT MATH (*) } & 3 \\ \text { MATH } 2350 & \text { DIFFERENTIAL EQUATIONS (**) } & 3\end{array}$
Social Science 3
Humanities/Fine Arts Course 3

Foreign Language Course 21203
*MATH 2230: Requires MATH 1960
**MATH 2350: Requires MATH 1960. MATH 2050
Recommended but not required.

Credits

Junior

Fall
MATH 2200 MATHEMATICAL COMPUTING I 3
MATH 3230 INTRODUCTION TO ANALYSIS (${ }^{\star}$) 3
MATH 4740 INTRODUCTION TO PROBABILITY AND 3 STATISTICS I (**)
Natural/Physical Science ${ }^{\star \star \star} 3$
Social Science^ 3
*MATH 3230: Requires MATH 2230
**MATH 4740: Requires MATH 2230
***N\&PS Course must be in a 2nd discipline
${ }^{\wedge}$ Social Science must be in a $2 n d$ discipline

Spring

HIST 1000 or Minor/2nd Major Course*		3
MATH 3200	MATHEMATICAL COMPUTING II	3
MATH 4750	INTRODUCTION TO PROBABILITY AND STATISTICS II (**)	3
Advanced Writing Requirement ${ }^{\star \star \star}$		3
Humanities/Fine Arts Course with US Diversity		3
*A\&S College Requirement Options		
**MATH 4750: Requires MATH 4740		
***Advanced Writing Requirement can be: CIST 3000		
Advanced Composition for IS\&T, ENGL 3050 Writing for		
the Workplace, ENGL 3980 Technical Writing Across the		

Credits

15

Senior

Fall
HIST 1010 or Minor/2nd Major Course ${ }^{\star} 3$
Group A Elective or Elective at 3000-4000 Level ${ }^{\star \star} 3$
Group B Elective or Elective at 3000-4000 Level*** 3
Additional Humanities/Fine Arts Course for A\&S or Minor/2nd 3
Major Course^
Additional Social Science for A\&S or Minor/2nd Major Course\# 3
*A\&S College Requirement Options
${ }^{* *}$ Must take 3 Stat Electives with at least 2 from Group
A. This semester Group A options: STAT 4430 (F) requires MATH 4750.
${ }^{* * *}$ Must take 3 Stat Electives with at least 2 from Group
A. This semester Group B options: STAT 4410 (F) requires MATH 4740; MATH/CSCI 3100 (F, S) requires MATH 2230; MATH 4900 Independent Study.
${ }^{\wedge}$ A\&S College Requirement Options. Additional HFA must be in a 3rd discipline.
\#A\&S College Requirement Options. Additional SS Must be in a 3rd discipline.

Credits

Spring

Group A Elective or Elective at 3000-4000 Level ${ }^{\star} 3$
Group B Elective or Elective at 3000-4000 Level ${ }^{\star \star} 3$
Elective/Minor/2nd Major Course ${ }^{\star \star \star} 3$
Elective/Minor/2nd Major Course*** 3
Elective/Minor/2nd Major Course ${ }^{\star \star \star} 3$
*Must take 3 Stat Electives with at least 2 from Group A.
This semester Group A options: STAT 4420 (S) requires
MATH 4750 \& CSCI 1620 or MATH 3200; STAT 4440 (S) requires MATH 4750 \& CSCI 1620 or MATH 3200.
${ }^{\star *}$ Must take 3 Stat Electives with at least 2 from Group A.
This semester Group B options: MATH/CSCI 3100 (F, S)
requires MATH 2230; MATH/CSCI 4310 (S) requires MATH
3050 and 4750; MATH/STAT 4450 (S) requires MATH 4740; MATH 4900 Independent Study.
***Students need at least 120 credits and a minimum of 27 upper level credits throughout the entire degree, with at least 18 credits of upper level coursework taken within the major/concentration. May need to select 3000/4000 level free electives to reach the 27 credit minimum.

Credits	15
Total Credits	120

This roadmap is a suggested plan of study and does not replace meeting with an advisor. Please note that students may need to adjust the actual
sequence of courses based on course availability. Please consult an advisor in your major program for further guidance.

This plan is not a contract and curriculum is subject to change

Additional Information About this Plan:

University Degree Requirements: The minimum number of hours for a UNO undergraduate degree is 120 credit hours. Please review the requirements for your specific program to determine all requirements for the program. In order to graduate on-time (four years for an undergraduate degree), you need to take 30 hours each year.

Placement Exams: For Math, English, Foreign Language, a placement exam may be required. More information on these exams can be found at https://www.unomaha.edu/enrollment-management/testing-center/ placement-exams/information.php
${ }^{\star \star}$ Transfer credit or placement exam scores may change suggested plan of study

Freshman		
Fall		Credits
$\begin{aligned} & \text { CMST } 1110 \\ & \text { or CMST } 2120 \end{aligned}$	PUBLIC SPEAKING FUNDS or ARGUMENTATION AND DEBATE	3
ENGL 1150	ENGLISH COMPOSITION I ${ }^{*}$)	3
MATH 1950	CALCULUS I (**)	5
Foreign Language Course 1110		5
*ENGL 1150 - Requires appropriate placement		
**MATH 1950 - Requires appropriate placement		
	Credits	16
Spring		
ENGL 1160	ENGLISH COMPOSITION II	3
HIST 1000	WORLD HISTORY TO 1500	3
MATH 1960	CALCULUS II	4
Foreign Language Course 1120		5
	Credits	15

Sophomore		
Fall		
HIST 1010	WORLD HISTORY SINCE 1500	3
MATH 1970	CALCULUS III	4
MATH 2050	APPLIED LINEAR ALGEBRA	3
MATH 3250	INTRODUCTION TO NUMERICAL METHODS (*)	3
Foreign Language Course 2110		3
*MATH 3250 requires MATH 1960		

***Advanced Writing Requirement can be: CIST 3000
Advanced Composition for IS\&T, ENGL 3050 Writing for the Workplace, ENGL 3980 Technical Writing Across the Discipline, or PHIL 3000 Philosophy Writing Seminar

Junior

Fall

MATH 3230	INTRODUCTION TO ANALYSIS (*)	3
MATH 4330	INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS (or Elective**)	3
MATH 4400	THE FINITE ELEMENT METHOD (${ }^{* * * \text {) }}$	3
Social Science		3
Humanities	ts with US Diversity^	3
*MATH 3230 requires MATH 2230		
**MATH 4330 Requires: MATH 1970 and 2350. + Offered only in Fall of odd-numbered years.		
***MATH 4400 requires MATH 1970, MATH 2050, and MATH 2350, and either MATH 3250 or MATH 4200		
${ }^{\wedge}$ HFA must be in something other than History		

	Credits	15
Spring		
MATH/CSCI 4200	NUMERICAL METHODS (*)	3
Humanities and Fine Arts or course towards Minor/2nd Major**		3
Elective		3
Elective at 3000-4000 Level		3
Social Science		3
*MATH/CSCI 4200 requires MATH 1970, MATH 2050, MATH 2350		
**HFA must be in a 3rd discipline		

Senior		
Fall		
MATH 4330	INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS (or Elective*)	3
MATH 4400	THE FINITE ELEMENT METHOD (or Computational Math Elective ${ }^{\star * *},{ }^{* * *}$)	3
MATH 4900	INDEPENDENT STUDIES (${ }^{\wedge}$)	3
Humanities/Fine Arts or Course towards Minor/2nd Major		3
Humanities/Fine Arts or Course towards Minor/2nd Major		3
*MATH 4330: Requires MATH 1970 and 2350. + Offered only in Fall of odd-numbered years.		

**MATH 4400 requires MATH 1970, MATH 2050, and MATH 2350, and either MATH 3250 or MATH 4200, Offered only in Fall of odd-numbered years.
${ }^{* * *}$ Must take 1 Computational Math Elective. Fall offerings: MATH 4230 odd-numbered years, MATH 4350, MATH 4900
${ }^{\wedge}$ Independent Studies must be related to Computational Mathematics

Credits	15
Spring	
Elective	3
Social Science*	3
Social Science	3
Natural/Physical Science with Lab	4
*SS must be in a 3rd discipline	
Credits	13
Total Credits	120

This roadmap is a suggested plan of study and does not replace meeting with an advisor. Please note that students may need to adjust the actual sequence of courses based on course availability. Please consult an advisor in your major program for further guidance.

This plan is not a contract and curriculum is subject to change

Additional Information About this Plan:

University Degree Requirements: The minimum number of hours for a UNO undergraduate degree is 120 credit hours. Please review the requirements for your specific program to determine all requirements for the program. In order to graduate on-time (four years for an undergraduate degree), you need to take 30 hours each year.

Placement Exams: For Math, English, Foreign Language, a placement exam may be required. More information on these exams can be found at https://www.unomaha.edu/enrollment-management/testing-center/ placement-exams/information.php
**Transfer credit or placement exam scores may change suggested plan of study

Pure Mathematics Concentration

Pure Mathematics Concentration, Even Year Admit

Freshman		
Fall		Credits
CMST 1110 or CMST 2120	PUBLIC SPEAKING FUNDS or ARGUMENTATION AND DEBATE	3
ENGL 1150	ENGLISH COMPOSITION I ($\left.{ }^{(}\right)$	3
MATH 1950	CALCULUS I (**)	5
Foreign Language Course 1110***		
*ENGL 1150: Requires placement.		
**MATH 1950: Requires Math Placement Exam or ACT or SAT scores.		
***Level 1110 f Humanity/Fine the student's B requirement via credits includin factored in to t	gn language courses count as a s course, Global Diversity, and toward quirement. If student is fulfilling the BA ernative methods, then 16 additional HFA and Global Diversity will need to be degree plan.	

*MATH 2350: Requires MATH 1960. MATH 2050
Recommended but not required.
**MATH 3230: Requires MATH 2230

${ }^{* * *}$ Students need at least 120 credits and a minimum of 27	
upper level credits throughout the entire degree, with at	
least 18 credits of upper level coursework taken within the	
major/concentration. May need to select $3000 / 4000$ level	
free electives to reach the 27 credit minimum.	
Credits	$\mathbf{1 5}$
Total Credits	$\mathbf{1 2 0}$

Pure Mathematics Concentration, Odd Year Admit		
Freshman		
Fall		Credits
CMST 1110 or CMST 2120	PUBLIC SPEAKING FUNDS or ARGUMENTATION AND DEBATE	3
ENGL 1150	ENGLISH COMPOSITION I (*)	3
MATH 1950	CALCULUS I (**)	5
Foreign Language Course 1110*** 5		
*ENGL 1150: Requires placement.		
**MATH 1950: Requires Math Placement Exam or ACT or SAT scores.		

***Level 1110 foreign language courses count as a Humanity/Fine Arts course, Global Diversity, and toward the student's BA requirement. If student is fulfilling the BA requirement via alternative methods, then 16 additional credits including a HFA and Global Diversity will need to be factored in to this degree plan.

Credits 16

Spring

*MATH 2230: Requires MATH 1960	$\mathbf{1 4}$

Spring

MATH 2050	APPLIED LINEAR ALGEBRA (${ }^{\star}$)	3
MATH 3230 \quad INTRODUCTION TO ANALYSIS (**)	3	
Social Science		3
Humanities/Fine Arts Course	3	
Foreign Language Course 2120	3	
${ }^{\star}$ MATH 2050: Requires MATH 1960		
${ }^{\star \star}$ MATH 3230: Requires MATH 2230		

Junior

Fall

MATH 2350	DIFFERENTIAL EQUATIONS (*)	3
MATH 4230	MATHEMATICAL ANALYSIS I (**)	3

MATH 4230	3
Coding Course ${ }^{\star \star \star}$	3

Humanities/Fine Arts \& US Diversity Course ${ }^{\wedge} 3$
Social Science\# 3
*MATH 2350: Requires MATH 1960. MATH 2050
Recommended but not required.
**MATH 4230: Requires MATH 3230. Offered only in fall of odd-numbered years.
***See Academic Catalog for list of Coding Course Options.
${ }^{\wedge}$ HFA Course should be in a 2nd discipline.
\#Social Science must be in a 2nd discipline.

Credits

Spring

MATH 4050 LINEAR ALGEBRA (${ }^{\star}$) 3
Elective ${ }^{\star \star} \quad 3$
Pure Mathematics Elective ${ }^{\star \star} 3$
Advanced Writing Requirement ${ }^{\star \star \star} 3$
Additional Humanities/Fine Arts Course for A\&S or Minor/2nd 3
Major Course\#
*MATH 4050: Requires MATH 2050 and MATH 2230. Offered only Spring of even-numbered years.
${ }^{\star \star}$ See Academic Catalog for list of Pure Mathematics Electives.
***Advanced Writing Requirement can be: CIST 3000
Advanced Composition for IS\&T, ENGL 3050 Writing for the Workplace, ENGL 3980 Technical Writing Across the Discipline, or PHIL 3000 Philosophy Writing Seminar
\#A\&S College Requirement Options. Additional HFA must be in a 3rd discipline

Credits

15

Senior

Fall
HIST 1000 or Minor/2nd Major Course* 3
MATH 4110 ABSTRACT ALGEBRA I (${ }^{\star \star}$) 3
Pure Mathematics Elective ${ }^{\star \star \star} 3$
Additional Social Science for A\&S or Minor/2nd Major Course^ 3
Natural/Physical Science\# 3
*A\&S College Requirement Options
**MATH 4110: Requires MATH 4050. Offered only in fall of even-numbered years.
${ }^{\star \star *}$ See Academic Catalog for list of Pure Mathematics Electives.
${ }^{\wedge}$ A\&S College Requirement Options. Additional SS must be in a 3rd discipline.
\#N\&PS Course must be in a 2nd discipline
15

Spring

HIST 1010 or Minor/2nd Major Course* 3
Pure Mathematics Elective ${ }^{\star \star} 3$
Elective or Minor/Double Major Course ${ }^{\star \star \star} 3$
Elective or Minor/Double Major Course ${ }^{\star \star \star} 3$
Elective or Minor/Double Major Course ${ }^{\star \star \star} 3$
*A\&S College Requirement Options
${ }^{* *}$ See Academic Catalog for list of Pure Mathematics Electives.
***Students need at least 120 credits and a minimum of 27 upper level credits throughout the entire degree, with at least 18 credits of upper level coursework taken within the major/concentration. May need to select 3000/4000 level free electives to reach the 27 credit minimum.

Credits	15
Total Credits	120

This roadmap is a suggested plan of study and does not replace meeting with an advisor. Please note that students may need to adjust the actual sequence of courses based on course availability. Please consult an advisor in your major program for further guidance.

This plan is not a contract and curriculum is subject to change

Additional Information About this Plan:

University Degree Requirements: The minimum number of hours for a UNO undergraduate degree is 120 credit hours. Please review the requirements for your specific program to determine all requirements for the program. In order to graduate on-time (four years for an undergraduate degree), you need to take 30 hours each year.

Placement Exams: For Math, English, Foreign Language, a placement exam may be required. More information on these exams can be found at https://www.unomaha.edu/enrollment-management/testing-center/ placement-exams/information.php
**Transfer credit or placement exam scores may change suggested plan of study

