COMPUTER
 ENGINEERING, BACHELOR OF SCIENCE

The 123 credit hour program in computer engineering leads to the Bachelor of Science degree in Computer Engineering. Thirty-one (31) hours of mathematics and physics and 9 hours of computer science complement the required 44 hours of work in the computer engineering area. Six (6) hours in written and oral communications, 15 hours in the humanities and social sciences, and 18 hours of engineering electives provide the opportunity for the student to acquire a general educational background and gain the cultural attributes associated with a university education.

The individual holding this degree will have advanced knowledge in his or her field of engineering interest and in addition will have a university educational background involving mathematics, the physical sciences, and the humanities and social sciences. Completion of this curriculum will enable the graduate to enter employment in positions involving computer hardware design and applications, computer software design and development, microcomputer based applications, and computer networking. The program also leads to the preparation for graduate work in computer engineering, computer science or electrical engineering.

Accreditation

The Electrical and Computer Engineering (ECE) department's Computer Engineering Program (CENG) is accredited by the Engineering Accreditation Commission of ABET (http://www.abet.org/)

Program Educational Objectives

The department's Program Educational Objectives are a statement of what graduates are doing, or are capable of doing, three to five years after graduation. The students in the Computer Engineering program receive a strong foundation in engineering science and design that not only enables them to pursue productive careers in the computer engineering field but that can be used as the foundation for careers in other areas, such as business, management, and medicine. Typical industries in which Computer Engineering graduates are employed include microprocessor/embedded system design, digital design, hardware/software integration, and computer architecture and parallel processing.

The Computer Engineering program prepares graduates for their professional careers with the objective that within five years after graduation they will be:

- Employed in business, academia, or government.
- Successful engineers who have established productive careers in their field and have contributed to improve and provide innovative and effective solutions in computer engineering or related fields
- Demonstrating technical and decision-making processes and the human interactions necessary to produce viable, responsible, and sustainable technological solutions.
- Engaging in lifelong learning, which may include postgraduate education, to successfully adapt to technological, industry specific, and cultural changes and to foster adept functioning in society.
- Performing engineering practice in a context that reflects awareness of the ethics of their profession and of the impacts of their work on the profession and society at large.

These Program Educational Objectives were developed with input from the program's educational objectives constituency, consisting of employers (including the Industry Advisory Board), graduates of the program, and faculty of the department.

Student Outcomes

Learning Outcomes are those abilities that a graduate of the Computer Engineering program will have attained so that he/she can meet the educational objectives established for the program.

At the time of graduation, students in the ECE Computer Engineering program will have:

1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3. an ability to communicate effectively with a range of audiences
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Professional Admission Requirements

Pre-professionally admitted College of Engineering students majoring in computer engineering will be granted profession admission into the computer engineering program if the students have:

- maintained a cumulative GPA of at least 2.4 and is in good standing in the College of Engineering, and
- completed ECEN 213 Electrical Circuits I or ECEN 215 Electronics and Circuits I and ECEN 313 Switching Circuit Theory or ECEN 370 Digital Logic Design with a grade of C or better.

A transfer student will be admitted if he/she has:

- completed courses equivalent to ECEN 213 or ECEN 215 and ECEN 313 or ECEN 370 at other institutions with acceptable transfer grades of C or better, and
- earned a GPA of 2.4 or better during their first 12 credit hours in computer engineering course work at UNL/UNO.

Transfer students will be able to appeal to the College's Academic Appeals Committee for admission for an additional semester if they fail to meet the GPA requirement.

See the College of Engineering section of the catalog for details on admission to the college.

Requirements

Course	Title	Credits
First Year		
First Semester		
ECEN 103	ELECTRICAL AND COMPUTER	4
	ENGINEERING FUNDAMENTALS	
CIST 1400	INTRODUCTION TO COMPUTER	$\mathbf{3}$
	SCIENCE I	$\mathbf{5}$
MATH 1950	CALCULUS I	$\mathbf{3}$
ENGL 1160	ENGLISH COMPOSITION II	$\mathbf{1 5}$
	Credits	

